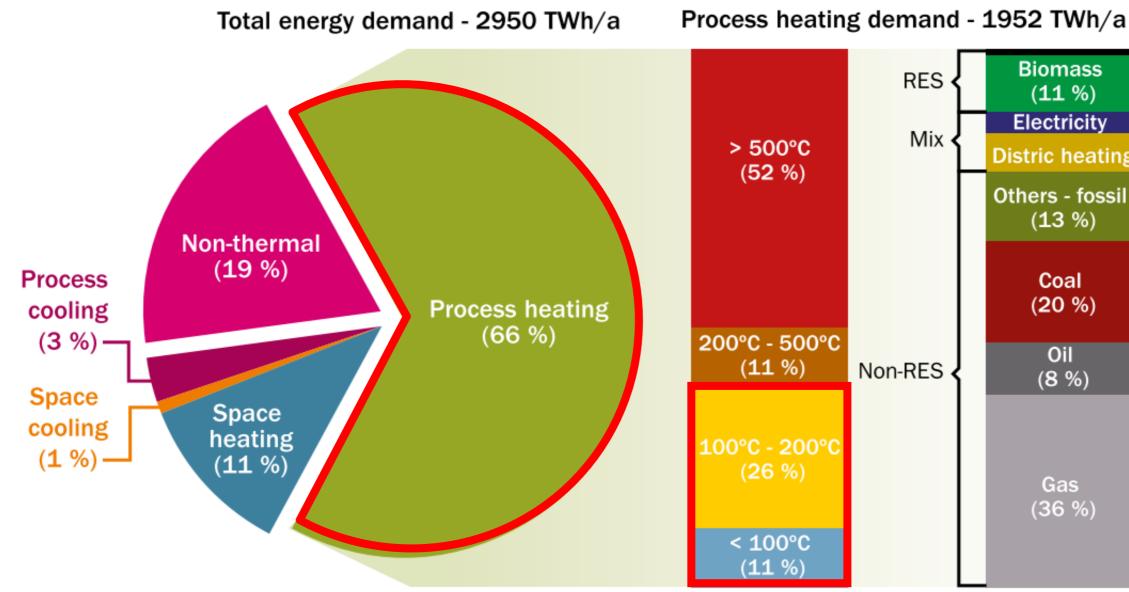


GHENT UNIVERSITY

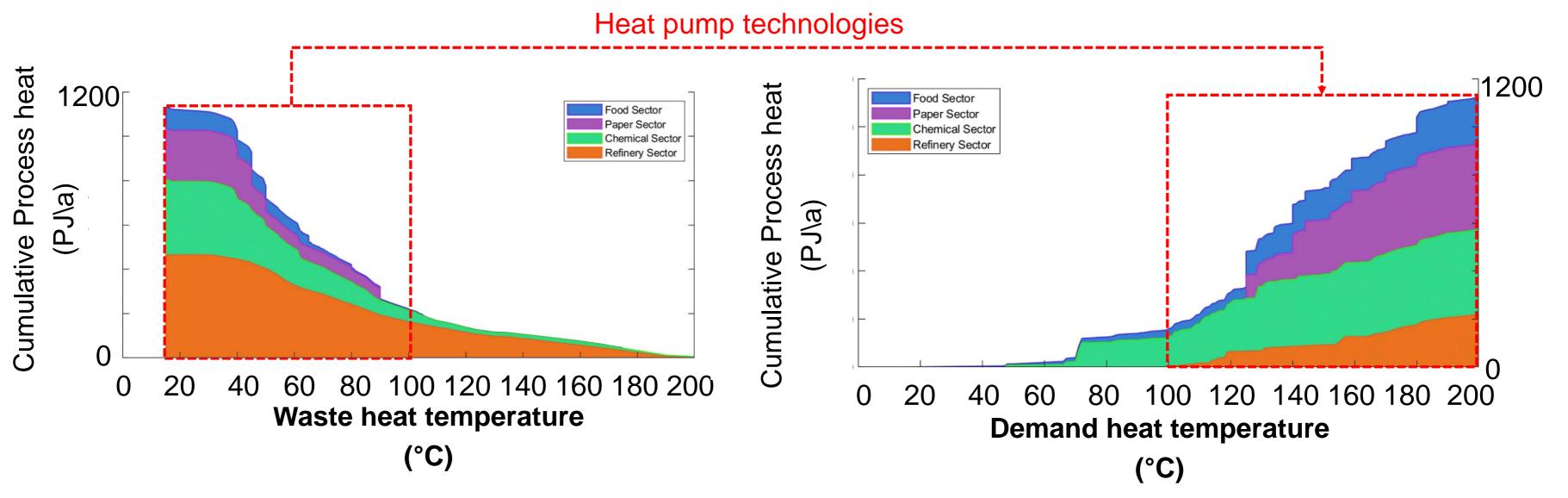

<u>INDUSTRIËLE</u> WARMTEPOMPEN,

TOEKOMSTMUZIEK OF NU AL RELEVANT?

Steven Lecompte, Elias Vieren, Kenny Couvreur

INDUSTRIAL ENERGY DEMAND IN EUROPE

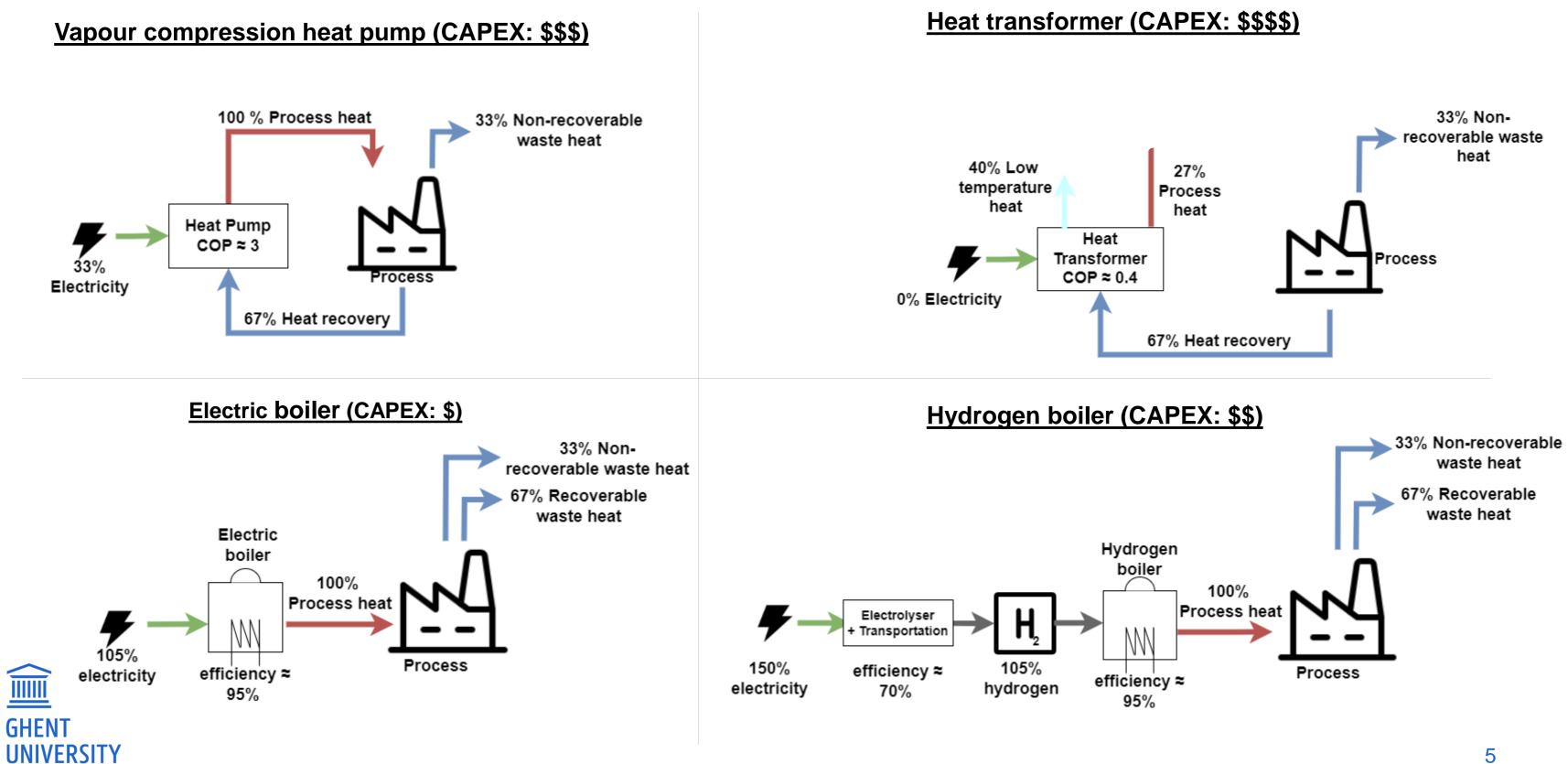
Temperature

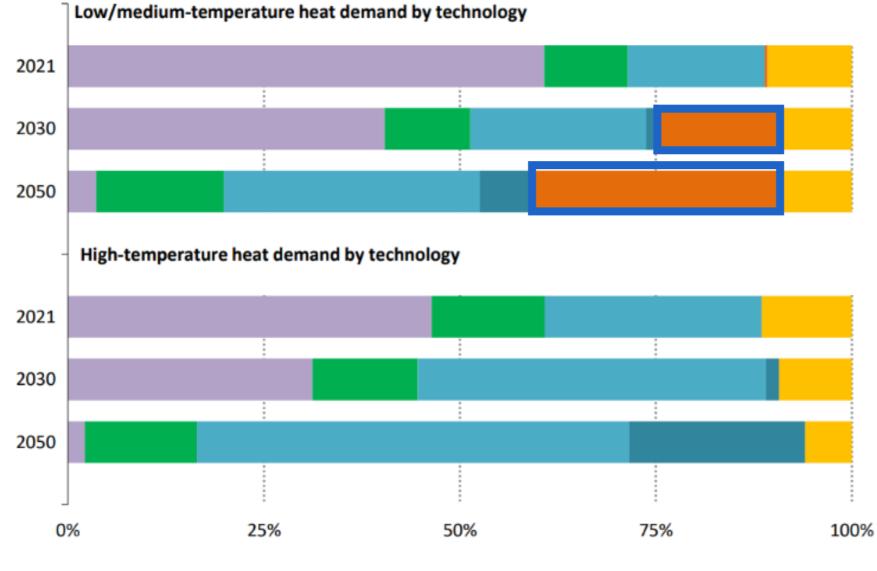


Biomass (11 %)	Others - RES (0.4 %)
Electricity	(3 %)
Distric heating	(8 %)
Others - fossil (13 %)	
Coal (20 %)	
Oil (8 %)	
Gas (36 %)	

Fuel source

De Boer et al. (2020) HeatRoadMap (EU 2015)


MATCHING COOLING (RESIDUAL HEAT) AND HEATING

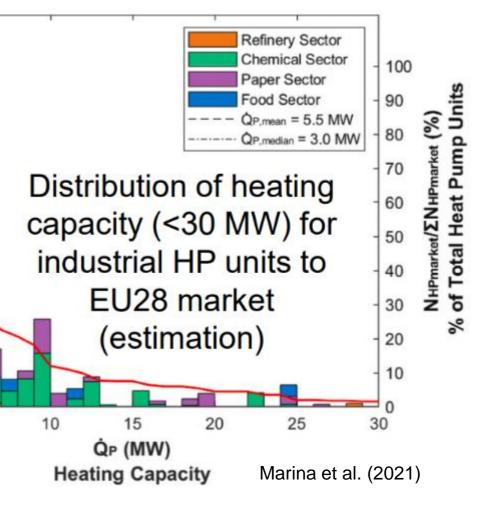

Marina et al. (2021)

HEAT PUMP TECHNOLOGIES POTENTIAL

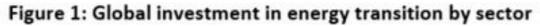
POSSIBLE SCENARIO (IEA)

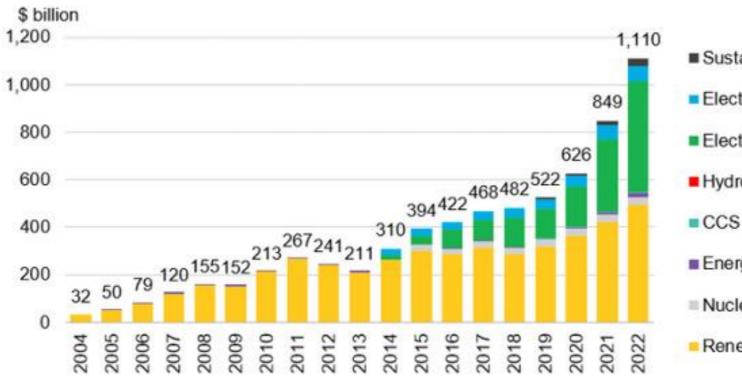
Net Zero By 2050, IEA

Additional 500 MW installed capacity each month over the next 30 years!


Technology

- Fossil fuel heater
- Biomass heater
- Electric heater
- Hydrogen heater
- Heat pump
- Other heat sources


SALE STATISTICS

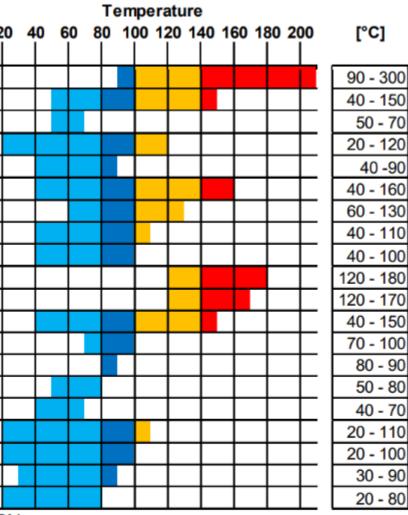


WHAT'S THE MARKET POTENTIAL?

Source: BloombergNEF

The Next Half-Trillion-Dollar Market Electrification of Heat

[BloombergNEF]


- Sustainable materials
- Electrified heat
- Electrified transport
- Hydrogen
- Energy storage
- Nuclear
- Renewable energy

ZOOMING IN ON APPLICATIONS

-

							mpe										
Sector	Process	20) 4	0 60	8 (0 	100 	120	0 14 	10 10	6 0 	180 	200	[°C]	Sector	Process	20
Paper	Drying													90 -240		Injection modling	+
	Boiling													110 - 180	Plastic	Pellets drying	
	Bleaching													40 - 150		Preheating	
	De-inking													50 - 70	Mechanical	Surface treatment	:
	Drying													40 - 250	engineering	Cleaning	
	Evaporation	$ \rightarrow $												40 - 170		Coloring	\neg
	Pasteurization													60 - 150		Drying	+
	Sterilization													100 - 140	Textiles	Washing	+
Food &	Boiling													70 - 120			\rightarrow
beverages	Distillation													40 - 100		Bleaching	\rightarrow
beverages	Blanching													60 - 90		Glueing	\rightarrow
	Scalding													50 - 90		Pressing	\rightarrow
	Concentration													60 - 80		Drying	
	Tempering													40 - 80	Wood	Steaming	
	Smoking													20 - 80		Cocking	
	Destillation													100 - 300		Staining	
	Compression													110 - 170		Pickling	
Chemicals	Thermoforming													130 - 160		Hot water	
Chemicals	Concentration													120 - 140	Several	Preheating	
	Boiling													80 - 110	sectors	Washing/Cleaning	1
	Bioreactions													20 - 60		Space heating	
Automotive	Resin molding													70 - 130	Technology	Readiness Level	(TR
Metal	Drying													60 - 200		inventional HP < 80	
	Pickling													20 - 100	commercial availab		
	Degreasing													20 - 100		ototype status, tech	
	Electroplating													30 - 90			
	Phosphating													30 - 90	la	boratory research, f	unc
	Chromating													20 - 80			
	Purging	Τ							J					1			

(L):

_

established in industry

80 - 100°C, key technology

ogy development, HTHP 100 - 140°C

ctional models, proof of concept, VHTHP > 140°C

Deep Dive Application Potential by C. Arpagaus

RECENT REPORTS

Decarbonizing Low-Temperature Industrial Heat In The U.S.

October 20, 2022

Share < 🍸 🥤 in 🖂

Industrial facilities use low-temperature heat (up to 165 degrees Celsius) in numerous manufacturing processes, contributing 3.5 percent of U.S. energy-related carbon emissions. New Energy Policy Simulator modeling finds shifting from fossil fuel combustion to industrial heat pumps for low-temperature process heat would reduce industry emissions by 5 percent in 2030 and 16 percent in 2050, while adding \$42 billion to the economy in 2030 and \$8 billion in 2050 and creating 275,000 jobs in 2030 and around 75,000 jobs in 2050. This report recommends federal policies to accelerate the deployment of industrial heat pumps in the U.S., including financial support for research and development and efficiency standards.

Breaking free from fossil gas

A new path to a climate-neutral Europe

Agora Energiewende Heat pumps are considered to be the major pillar for the supply of low temperature process heat to industry, and the major lever in decarbonising the less energy-intensive industries, which in most cases are not integrated into heavy industry clusters. This

RECENT REPORTS

Industrial Heat Pumps: it's time to go electric Heat pumps are a great starting point for decarbonizing industrial heat because they are easily scalable and have superior efficiencies, particularly in light industry, where there are typically lower temperature heating requirements.

Net Zero by 2050

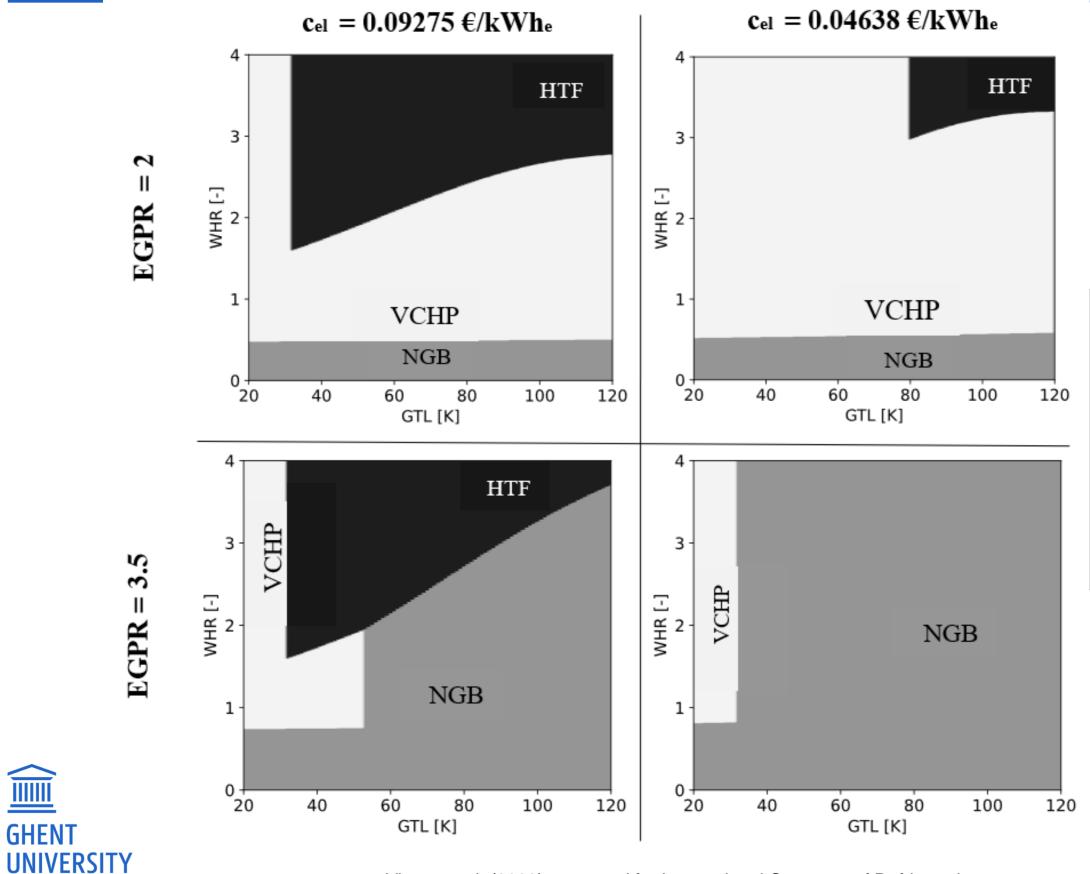
Electricity accounts for around 40% of heat demand by 2030 and about 65% by 2050. For low- (<100 °C) and some medium- (100-400 °C) temperature heat, electrification includes an important role for heat pumps (accounting for about 30% of total heat demand in 2050). In the NZE, around 500 MW of heat pumps need to be installed every month over the next 30 years. Along with electrification, there are smaller roles for hydrogen and

WHAT'S THE CATCH?

- Unfavorable electricity / fossil-fuel price ratio
 - To be competitive: US: \$10/MWhe, EU: \$24/MWhe [BloombergNEF]
 - Large variability!
- Insufficient grid capacity
 - Storage solutions
 - Projected growth similar as between 1990 and 2007 [Transformation of Europe's power system until 2050, McKinsey]
- Low technology readiness
 - Technology status and perspectives, Jonas Lundstedt Poulsen
- Insubstantial policy incentives

ELECTRICITY / FOSSIL-FUEL PRICE RATIO

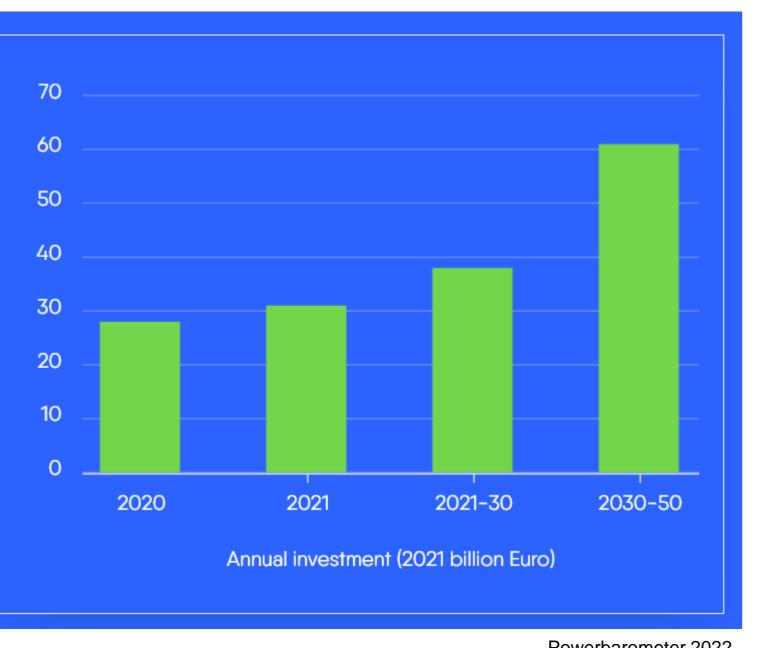
	Pri	ces without	OPEX Parity			
Country	Gas	Electricity	Price Ratio	COP	∆T_Lift	
Sweden	4.1	4.8	1.17	1.1	229	
Finland	4.5	5.4	1.20	1.1	222	
Luxembourg	2.3	4.1	1.78	1.6	132	
Lithuania	3.0	6.8	2.27	2.0	96	
Denmark	3.1	7.0	2.26	2.0	96	
France	2.8	6.4	2.29	2.1	95	
Netherlands	2.6	6.2	2.38	2.1	90	
Slovenia	2.5	6.1	2.44	2.2	87	
Estonia	3.0	7.1	2.37	2.1	91	
Czech Republic	2.4	6.3	2.63	2.4	79	
Austria	2.8	7.4	2.64	2.4	78	
Latvia	2.7	7.5	2.78	2.5	73	
Hungary	2.5	7.0	2.80	2.5	73	
Greece	2.5	7.5	3.00	2.7	66	
Poland	2.4	7.2	3.00	2.7	66	
Romania	2.3	7.0	3.04	2.7	65	
Croatia	2.3	7.2	3.13	2.8	63	
Belgium	2.0	6.8	3.40	3.1	56	
Germany	2.6	8.6	3.31	3.0	58	
Bulgaria	2.0	6.8	3.40	3.1	56	
Spain	2.5	9.1	3.64	3.3	51	
Portugal	2.4	8.9	3.71	3.3	50	
Ireland	2.7	10.0	3.70	3.3	50	
Italy	2.4	9.4	3.92	3.5	47	
Slovakia	2.5	10.2	4.08	3.7	44	
UK	2.1	12.8	6.10	5.5	26	
EU	2.5	8.2	3.28	3.0	59	

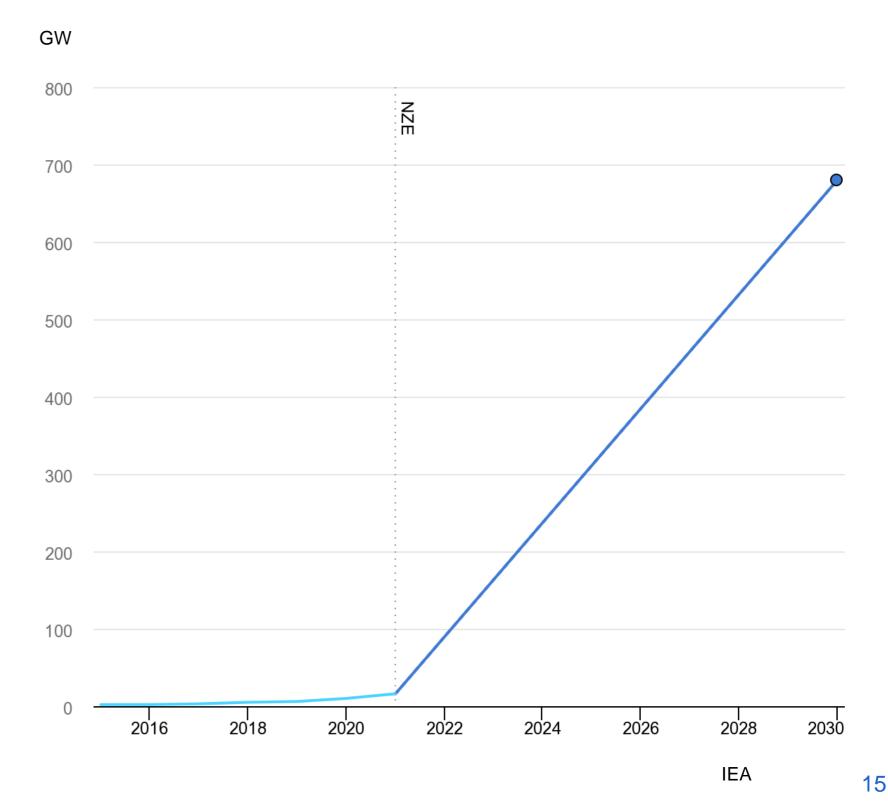


Deep Dive Application Potential by C. Arpagaus

ELECTRICITY / FOSSIL-FUEL PRICE RATIO

GHENT


Vieren et al. (2023), accepted for International Congress of Refrigeration



HTF: Heat transformer VCHP: Vapour compression heat pump NGB: Natural gas boiler EGPR: Electricity to gas price ratio = $\frac{c_{el}}{c_{el}}$ Cna WHR: Waste heat ratio = $\frac{\dot{Q}_{residual}}{\dot{Q}_{process}}$ Study considers electric heater when not sufficient waste heat available

GRID CAPACITY AND RE AVAILABILITY

Installed grid-scale battery storage capacity in the Net Zero Scenario

Powerbarometer 2022

TECHNOLOGY READINESS

Temperature range		Technology readiness level (TRL)	Exam
<80 °C		TRL 11: Proof of market stability	Pape Food Chem
80 °C to 100 °C		TRL 10: Commercial and competitive, but large- scale deployment not yet achieved	Pape Food Chem
100 °C to 140 °C		TRL 8-9: First-of-a-kind commercial applications in relevant environment	Pape Food Chem
140 °C to 160 °C		TRL 6-7: Pre-commercial demonstration	Paper Food Cherr Vario Stear
160 °C to 200 °C		TRL 8-9: First-of-a-kind commercial applications for small-scale MVR systems and heat transformers TRL 4-5: Early to large prototype	Vario High- produ
>200 °C		TRL 4: Early prototype	Variou High-t
Readines	ss I	evel: 🔴 TRL 1 to 5 🥚 TRL 6 to 7 🔵	TRL 8 t

Notes: MVR = mechanical vapour recompression. TRLs can vary for specific processes or different heat pump capacities.

Sources: Representation using the IEA extended TRLs (IEA, 2020b) based on Maruf et al. (2022).

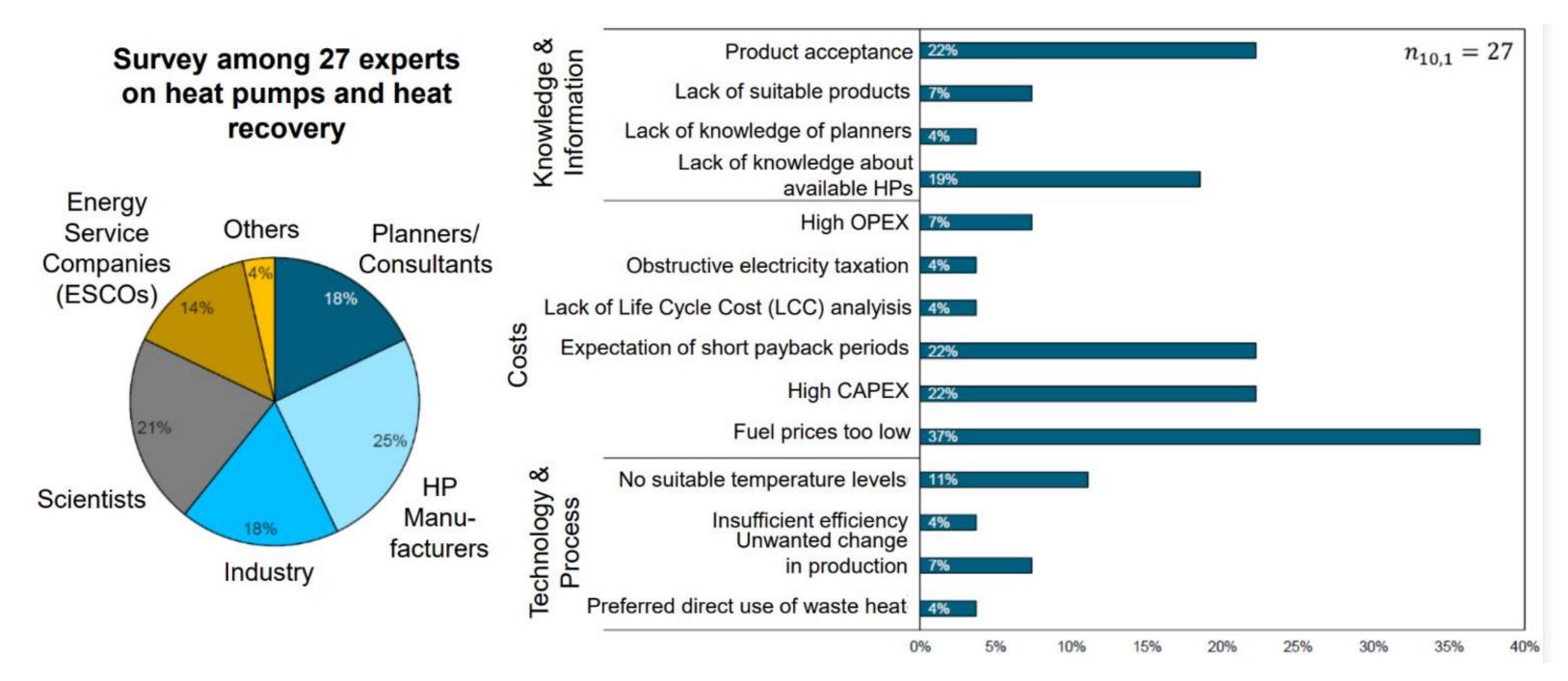
mple process

er: De-inking d: Concentration mical: Bio-reactions

er: Bleaching d: Pasteurisation mical: Boiling

er: Drying d: Evaporation mical: Concentration

er: Pulp boiling d: Drying mical: Distillation


ious industries: am production

ious industries: h-temperature steam duction

ous industries: -temperature processes

to 11

THER MARKET BARRIERS

Wolf et al (2017, 2020), Deep Dive Application Potential by C. Arpagaus

EU Heat Pump Action Plan

There is an urgency to switch to renewable efficient heating and cooling technologies in buildings, industry, and networks. The 2022 Commission report on the <u>competitiveness of clean energy</u> <u>technologies</u> indicates that the deployment of all kinds of heat pumps (from single-family houses to large multi-apartment, tertiary buildings and heat network heat pumps to <u>high-temperature</u> heat pumps for industrial applications) is necessary to meet our reinforced climate objectives. However,

- EU RED III: art. 22: Increase alternatives to fossil-fuel based energy use in industry End fossil fuel use for processes up to 200°C by 2027
- EU EED: Member States shall remove regulatory barriers for waste heat utilization and data centers with a total rated energy input exceeding 100 kW shall use waste heat or waste heat recovery applications
- EU EED 2022, art. 23: heating and cooling plans

'There is a huge potential, but that it requires an immediate, common and interdisciplinary effort to exploit the full potential'

Steven Lecompte

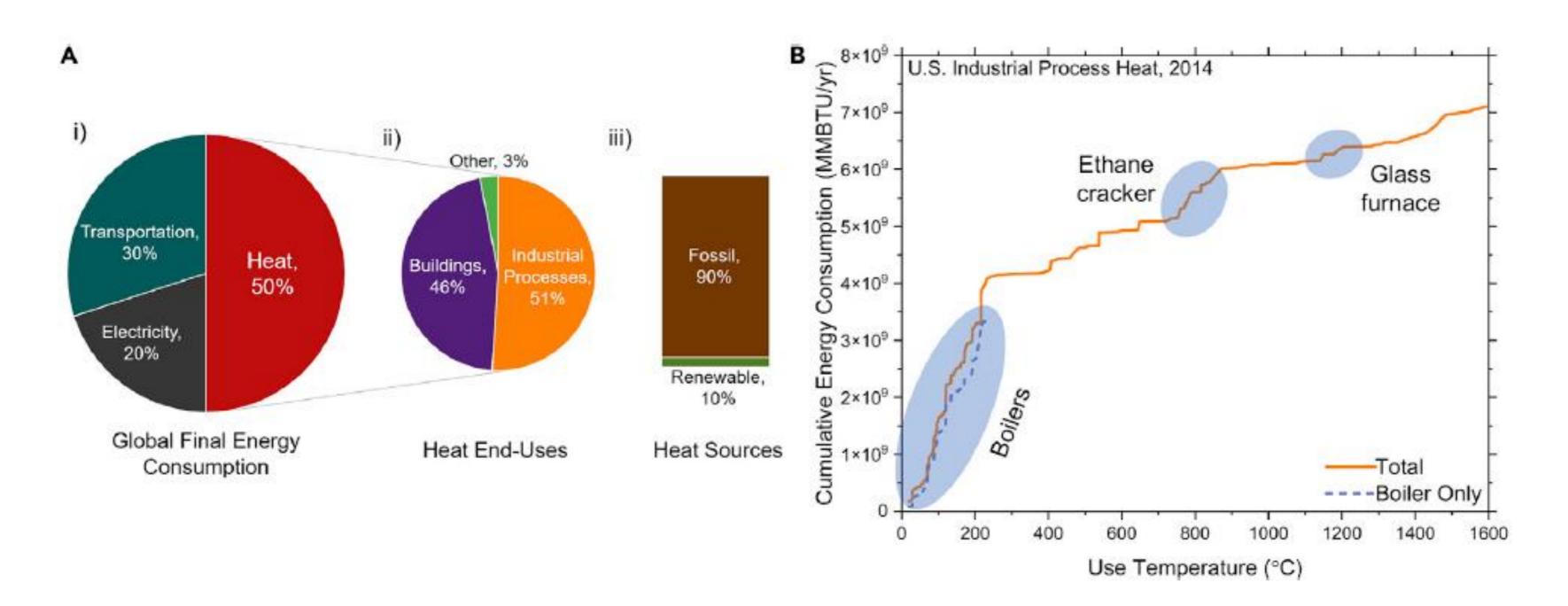
DEPARTMENT OF ELECTROMECHANICAL, SYSTEMS AND METAL ENGINEERING

- Е steven.lecompte@ugent.be
- Т +32 9 264 33 55
- Μ +32 470 04 55 24

www.ugent.be

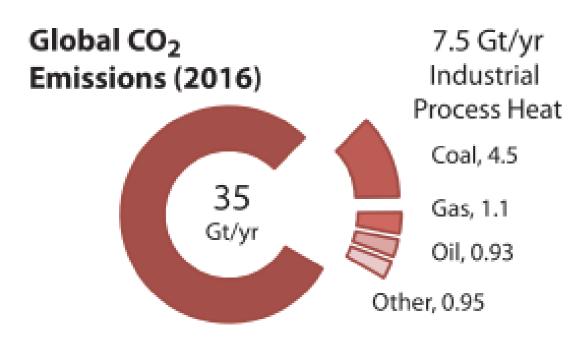
- f **Ghent University** y @ugent
- in
 - **Ghent University**

MARKET POTENTIAL EU

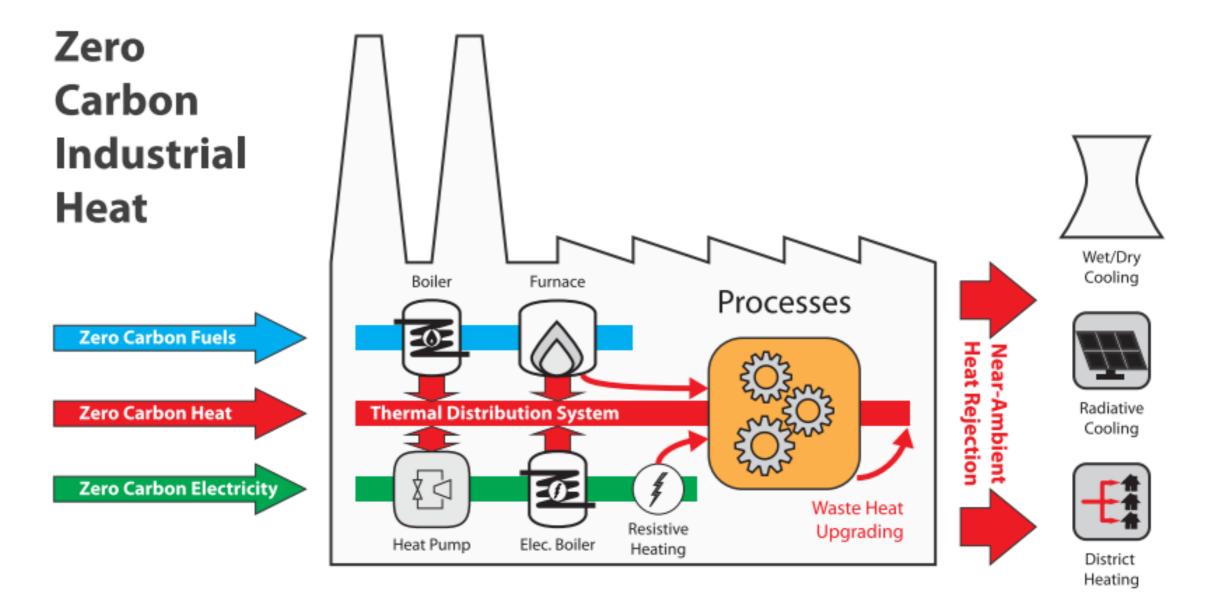

Market potential up to 200°C

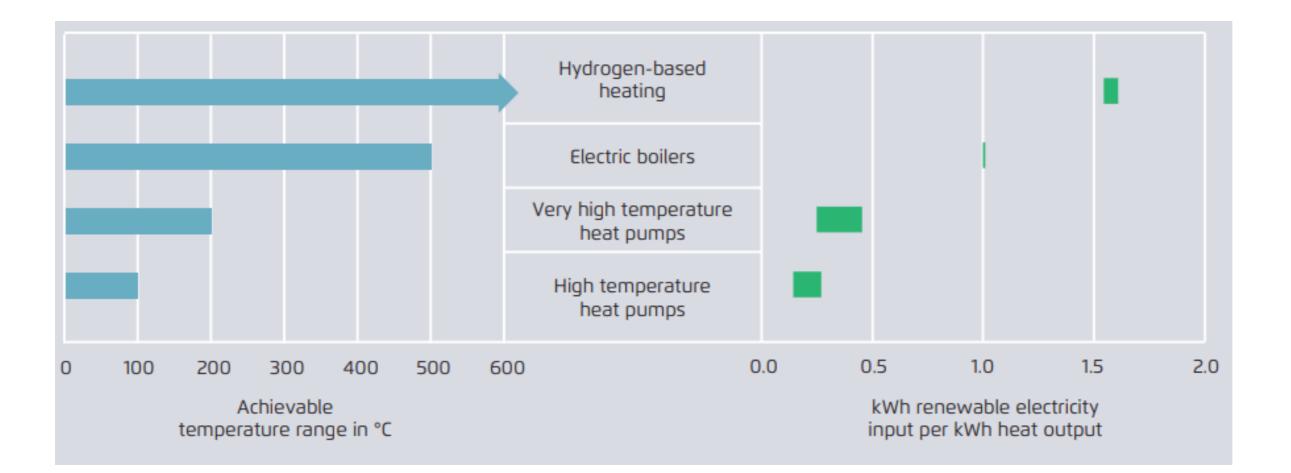
	Cumulative Heating Capacity (GW)	EU28 Heat Pump Units (#)	Heat Pump Process Heat Coverage (PJ/a)	Electricity Requirement (PJ/a)
Paper	7.9	1351	245	94
Chemical	9.1	1291	283	65
Food	5.5	1463	98	31
Refining	0.5	69	14	6
	23	4174	641	195

An estimation of the EU industrial heat pump market potential, TNO, 2022



GLOBAL FINAL ENERGY USE US

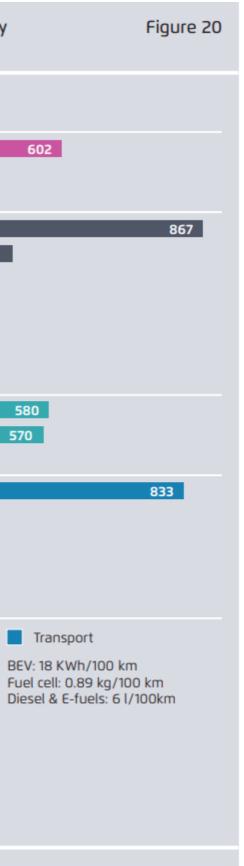



The decarbonize industry: we must decarbonize heat.

Pathways to decarbonize heat

- (1) zero-carbon fuels,
- (2) zero-carbon heat sources,
- (3) electrification of heat,
- (4) better heat management.

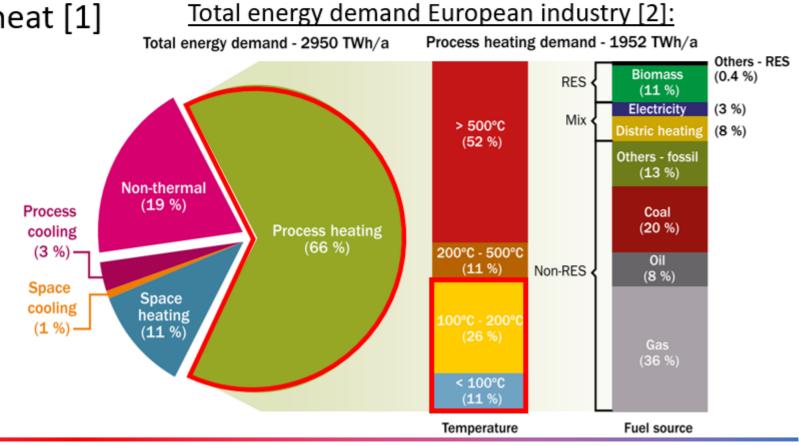
GHG emissions reductions in kg of CO_{2eq} when using 1 MWh^{*} of renewable electricity to substitute fossil fuels in different applications


Technology swite	:h	GHG savings [in kg CO _{z eg} /MWh]	
Fossil gas boiler Fossil gas boiler Fossil gas boiler	→ Heat pump → Hybrid heat pump (30% H ₂ heat) → H ₂ boiler	322 129	602
Hard coal plant Fossil gas OCGT Fossil gas CCGT Hard coal plant Hard coal plant Fossil gas CCGT Fossil gas OCGT	→ 100% wind and solar → 100% wind and solar → 100% wind and solar → H_2 CCGT → H_2 OCGT → H_2 OCGT → H_2 OCGT	5 340 328 218 140 128	i12
Coal blast furnace Fossil gas boiler Fossil gas boiler	→ H_2 DRI/EAF steelmaking → Heat pump → H_2 boiler	146	580 570
Diesel car Diesel car Diesel car Efficiency assum	 → Battery electric vehicle → H₂ fuel cell vehicle → E-fuels vehicle 	277 116	
Buildings Hybrid heat pump:	Energy sector Hard coal plant: 39%	BF: 2t CO _{2eo} /t steel	Transp BEV: 18 KW

Hybrid heat pump: 145% (HP 450%, Boiler: 90%) Heat pump: 300% Boiler: 90%	Hard coal plant: 39% OCGT: 39% CCGT: 59%	BF: 2t CO _{2eq} /t steel DRI/EAF: 3.4 MWh _{ei} /t steel Heat pump: 300% Boiler: 95%
--	--	--

* 1 MWh represents roughly the annual electricity production of 1 kWp solar PV Emissions intensities (in g $CO_2/kWhPE$) = Hard coal (338.2), Fossil gas (200.8), Diesel (266.5) HP = Heat pump, H₂ = Hydrogen, OCGT = Open cycle gas turbine, CCGT = Closed cycle gas turbine, BF = Blast furnace, DRI = Directly reduced iron, EAF = Electric Arc Furnace, BEV = Battery electric vehicle

Agora Energiewende (2023)



Why high-temperature heat pumps?

- The energy use in industry (2019): 40 % of the global CO₂ emission's \succ Mainly attributed to the demand in heat.
- Four pathways to decarbonize industrial heat [1]
 - Zero-carbon fuels
 - Zero-carbon heat sources
 - Electrification of heat

Heat pumps

➢ Better heat management

15-18 May 2023, Chicago, Illinois

