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Control algorithms for flexibility in

power-to-X and industrial processes
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Unlock Industrial Flexibility

Investigate Control Methods

Reduce CO, Emissions
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Redesign for Flexibility




Fundamental research challenge

* integrate model predictive control (MPC) with data-driven deep learning (DL)
« for unlocking flexibility from industrial processes

« while incorporating constraints from industrial process characteristics, energy market design and
electricity grids

« combines best of both worlds

* model-based approaches for robustness, and model-free/data-driven techniques to deal with the
uncertainty and complex nature of energy-intensive processes.

—> (re)design for flexibility of energy-intensive processes for reduced costs and emissions
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Approach
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Result example 1: Multi-market

Integration for industrial flexibility
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Bidding Strategy Model: Decision Model of the Industrial Player

v

Benefit to Industrial Process
(extra income, lower cost)

Market Results
(purchased flex, prices)

Environment Results
(CO, reduction)

Uncertainty in market prices

(day-ahead prices, balancing

prices, imbalance settlement
prices, products prices)
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Result example 1: Multi-market

Integration for industrial flexibility o
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Objective

What is most economical and carbon-efficient way to leverage industrial flex

in energy and balancing markets? 060 | 600 60600 000
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Result example 2: from white-box

to data and combining MPC with ML

System identification Control policy training
Simulation Backward propagation
4’. {
«——— >
Training Forward propagation

Simulated or measured - Initial conditions

Pl controller data states and outputs

- Objective function

- Time-series datasets of

external parameters - Constraint penalties

Inputs Differentiable loss terms

Differentiable closed-loop system

System representation Jan Drgonia, Karol Ki$, Aaron Tuor, Draguna Vrabie, Martin Klauco, Differentiable predictive control: Deep learning alternative to explicit
model predictive control for unknown nonlinear systems, Journal of Process Control, Volume 116, 2022, Pages 80-92
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Implement fast and robust model predictive control

e Strengths of MPC
° Control — Solve 0pt|m|sat|0n Problem Setup

) . Prediction Objective Constraints
* Nonlinear dynamics Model | { Function

Reference

* Input constraints

* General objective functions

States Optimal Optimization |Actions
+ Weakness S
 Computationally demanding
tate

* Online optimisation Estimation

Online Synthesis

* No explicit formulation for
nonlinear systems
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Neural Network based approximate nonlinear MPC

* Deep neural network MPC
 Offline training based on observations
* Learn optimum control policy

 Different methods for constraints
handling
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Closing the loop

Flex Usage

Grid Constraints
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Valorisation potential

* InduFlexControl can
* quantify and design flexibility models for your target processes
* develop data-driven representations of your processes and benchmark them with existing models
e evaluate the use of your processes’ flexibility in relevant energy markets and specific grid situations

* design model predictive control methods for exploiting the flexibility of your processes
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+ many conference publications
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Contact information

Project coordinator & main Pl : Geert.Deconinck@kuleuven.be

Pl UGent: Guillaume.Crevecoeur@ugent.be

Pl VITO: Annelies.Delnooz@vito.be

NNNNNNNNNNNNNNNNNNNNNNNNNN

w MOON


mailto:Geert.Deconinck@kuleuven.be
mailto:Guillaume.Crevecoeur@ugent.be
mailto:Annelies.Delnooz@vito.be

	Dia 1: InduFlexControl: hoe flexibiliteit in energie-intensieve processen vrijstellen en vermarkten 
	Dia 2: Control algorithms for flexibility in power-to-X and industrial processes
	Dia 3
	Dia 4: Fundamental research challenge
	Dia 5: Approach
	Dia 6: Result example 1: Multi-market integration for industrial flexibility
	Dia 7: Result example 1: Multi-market integration for industrial flexibility
	Dia 8: Result example 2: from white-box  to data and combining MPC with ML
	Dia 9
	Dia 10
	Dia 11
	Dia 12: Valorisation potential 
	Dia 13: Highlights - publication output
	Dia 14: Contact information 

