

KU LEUVEN 600

InduFlexControl: hoe flexibiliteit in energieintensieve processen vrijstellen en vermarkten

Flux50, Smart Energy Academy, 21 November 2024

prof.dr.ir. Geert Deconinck, KU Leuven ESAT-electa / KIES / EnergyVille

Control algorithms for flexibility in power-to-X and industrial processes

"4-year" Moonshot cSBO Catalisti/Flux50

- Mar 2020-Nov 2021: InduFlexControl-1
- Dec 2022-May 2025: InduFlexControl-2

KU Leuven

Faculty of Engineering Science ELECTA – Electrical Energy Systems and Applications The SySi– Thermal System Simulations

UGent

Faculty of Engineering Science EELAB – Electrical Energy Laboratory IDLab – Internet Technology and Data Science Laboratory

VITO

AMO – Algorithms, Modelling and Optimisation

MOONS

Fundamental research challenge

- integrate **model predictive control** (MPC) with data-driven **deep learning** (DL)
	- for unlocking flexibility from industrial processes
	- while incorporating constraints from industrial *process characteristics*, energy *market* design and electricity *grids*
- combines best of both worlds
	- model-based approaches for **robustness**, and model-free/data-driven techniques to deal with the **uncertainty** and complex nature of energy-intensive processes.
- → (re)design for flexibility of energy-intensive processes for **reduced costs and emissions**

Approach

Result example 1: Multi-market integration for industrial flexibility

Uncertainty in market prices (day-ahead prices, balancing prices, **imbalance settlement prices**, products prices)

Result example 1: Multi-market integration for industrial flexibility

What is most economical and carbon-efficient way to leverage industrial flex in energy and balancing markets?

Key Findings

aFRR: Free bids provided highest profitability;

decisions can be taken closer to real-time when more information is available.

mFRR: Reservations dominated with no activation; provision of mFRR leads to losses in most quarters.

Imbalance: Significant gains possible by optimizing real-time consumption and generation adjustments; highly profitable but assumes "perfect foresight"

 CO_2 reduction: Both indirect and direct strategies reduced emissions, with gas consumptio $\check{\mathfrak{n}}^\mathsf{sep}$ lowered by 11% in direct reduction scenarios.

InduFlexControl-2 Control algorithms for flexibility in power-to-X and Multi-Platform valorisation
ility in composite industria

MOON

CATALISTI & ELECTRIC fluxe

Financial supp

Result example 2: from white-box to data and combining MPC with ML

Ján Drgoňa, Karol Kiš, Aaron Tuor, Draguna Vrabie, Martin Klaučo, Differentiable predictive control: Deep learning alternative to explicit model predictive control for unknown nonlinear systems, Journal of Process Control, Volume 116, 2022, Pages 80-92

Implement fast and robust model predictive control

- Strengths of MPC
	- Control \rightarrow solve optimisation
	- Nonlinear dynamics
	- Input constraints
	- General objective functions
- Weakness
	- Computationally demanding
	- Online optimisation
	- No explicit formulation for nonlinear systems

Neural Network based approximate nonlinear MPC

- Deep neural network MPC
	- Offline training based on observations
	- Learn optimum control policy
	- Different methods for constraints handling

e.g. cooling tower

Log Barrier

No Constraints Penalty

Closing the loop

Clusters for Growth

Valorisation potential

- InduFlexControl can
	- quantify and design flexibility models for your target processes
	- develop data-driven representations of your processes and benchmark them with existing models
	- evaluate the use of your processes' flexibility in relevant energy markets and specific grid situations
	- design model predictive control methods for exploiting the flexibility of your processes

Reduce your CO² emissions by using the underlying flexibility of your processes

Highlights - publication output

[J1] C. Manna, M. Lahariya, F. Karami, and C. Develder, "A data-driven optimization framework for industrial demand-side flexibility," Energy, vol. 278, p. 127737, Sep. 2023, doi: 10.1016/J.ENERGY.2023.127737.

[J2] M. Lahariya, F. Karami, C. Develder, and G. Crevecoeur, "Physics-Informed LSTM Network for Flexibility Identification in Evaporative Cooling System," IEEE Trans. Ind. Informatics, vol. 19, no. 2, pp. 1484–1494, Feb. 2023, doi: 10.1109/TII.2022.3173897.

[J3] R. Cantu Rodriguez, E. J. Palacios-Garcia, and G. Deconinck, "Redesign for flexibility through electrification: Multi-objective optimization of the operation of a multi-energy industrial steam network," Appl. Energy, vol. 362, p. 122981, May 2024, doi: 10.1016/J.APENERGY.2024.122981.

[B1] R. Cantu-Rodriguez, E. J. Palacios-García, and G. Deconinck, "Modelling and Optimal Scheduling of Flexibility in Energy-Intensive Industry," in Industrial Demand Response: Methods, best practices, case studies, and applications, H. Haes Alhelou, A. Moreno-Muñoz, and P. Siano, Eds. Institution of Engineering and Technology (IET), 2022, pp. 209–240.

+ many conference publications

Contact information

Project coordinator & main PI : Geert.Deconinck@kuleuven.be

PI UGent: Guillaume.Crevecoeur@ugent.be

PI VITO: Annelies.Delnooz@vito.be

